1.5B、7B、8B、14B、32B、70B是蒸馏后的小模型,671B是基础大模型,它们的区别主要体现在参数规模、模型容量、性能表现、准确性、训练成本、推理成本和不同使用场景:
参数规模
参数规模的区别,模型越大参数数量逐渐增多,参数数量越多,模型能够学习和表示的知识就越丰富,理论上可以处理更复杂的任务,对各种语言现象和语义理解的能力也更强。比如在回答复杂的逻辑推理问题、处理长文本上下文信息时,70B的模型可能会比1.5B的模型表现得更出色。
671B:参数数量最多,模型容量极大,能够学习和记忆海量的知识与信息,对各种复杂语言模式和语义关系的捕捉能力最强。
1.5B-70B:参数数量相对少很多,模型容量依次递增,捕捉语言知识和语义关系的能力也逐渐增强,但整体不如671B模型丰富。
一个B是10亿个参数的意思